Valiant's Theorem

Emmy Huang

Hume's Problem of Induction

Q: If you observe 500 black ravens, what basis do you have for supposing that the next one you observe will also be black?

Thoughts?

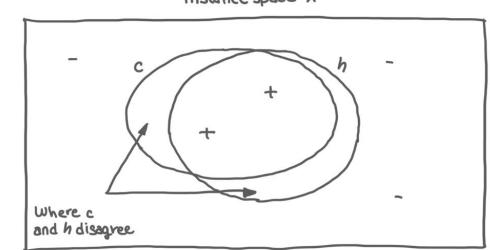
- Bayes' Theorem
 - o Assumes all ravens are drawn from same distribution
- Computational Learning Theory
 - · Learning does happen but how?
 - o Not equal footing
 - O Whydoesthis work?

PAC-learning (Probably Approximately Correct)

- High probability * mostly correct predictions
- S: sample space
- f.concept
- · C: concept class
- D: probability_distribution
- Goal: given m examples x; drawn independently from D, we know f(x;) >
 Output hypothesis language h such that h disagrees with f no more than
 E of the time

Equation and Visualization

• $error(h) = P(h(x) \neq f(x) \mid x \text{ drawn from } D) \leq \varepsilon$



Instance space X

Valiant's Theorem

In order for the output hypothesis h to agree with I - E of the future data drawn from D with probability I - S over the choice of samples, it suffices to find any hypothesis h that agrees with:

$$m \geq \frac{1}{\varepsilon} \log\left(\frac{|C|}{\delta}\right)$$

samples chosen independently from D.

Proof

- Badhypothesish
 - O Disagrees with ffor at least & fraction of data
- Thus: $Pr[h(x_1) = f(x_1), ..., h(x_m) = f(x_m)] < (1-\epsilon)^m$
- Probability that there exists a bad hypothesis h in C that agrees with sample data?
- Pr[there exists a bad h that agrees with f for all samples] < |C| (1-ε)^m
- Setequal to S and solve for m:

$$m = \frac{1}{\varepsilon} \log\left(\frac{|C|}{s}\right)$$

Further Exploration

- Infinite concept classes? Rectangle in plane?
- · Shattering, VC Dimension

